

Challenges to detect genome-edited plants - consequences for surveillance authorities

Lutz Grohmann

BVL | Dept. Genetic Engineering | Unit 405

9th MEACB - 6-7 November 2019, Berlin

General considerations (I)

What are the new analytical challenges?

- Detection of small DNA-sequence modifications/variations
- Identification of the technique used to modify the plant genome
- Identification of the GE-plant ("event-specific" detection)

What is required for GE-GMO testing?

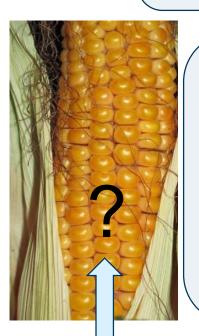
- Analytical equipment and trained personel (laboratory accreditation)
- Knowledge of target, reference material
- validated methods
- Reliability of the analysis result

General considerations (II)

Genome editing of plants by SDN-1, SDN-2, or ODM and

- no foreign DNA present
- no other permanent changes in the genome
- few small sequence variations (SNV, indels)
- no multiplex genome editing

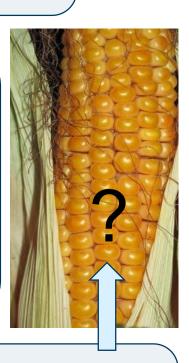
not considered are


- insertion(s) of foreign DNA (SDN-3)
- targeted knock-out of several genes (metabolic pathway)

Detection

GTGAAGATACTCTTGTTAATGGCAACCAGCATCTTGGGAT

Identification of Genome Editing

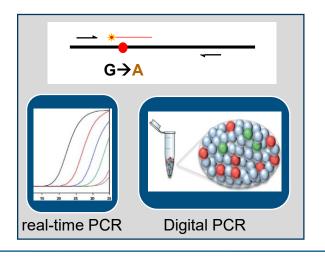

untargeted mutagenesis

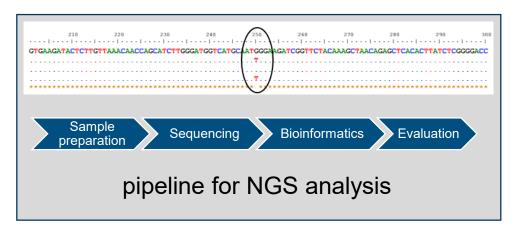
genome-editing (targeted mutagenesis)

random/natural variation

Identification of GE plant

(several) unique modification(s)? genotyping, somaclonal variations?


same modification(s) present? Natural, other mutagenesis?



Challenges in GE-GMO analysis

Detection of SNV require specific (new) methods of analysis

- Real-time PCR using specific reagents
 - (blocked or LNA/MGB probes, RNase H probe)
- Digital PCR
 - quantification of few SNV copies in background of wildtype DNA
- Next-Generation-Sequencing (NGS)
 - Whole-genome-sequencing or targeted sequencing

Requirements for GE-GMO detection

Surveillance laboratories will require additional new equipment

- New techniques and methods (targeted or untargeted detection)
 - Real-time PCR, digital PCR
 - Next-Generation-Sequencing (NGS)

Accreditation of laboratories

- new measurement instruments and IT (validation, verification)
- training of personel
- Validation of methods

Detection, identification and quantification method for GE-GMOs

- for EU authorisation applicants must provide a method, which is validated (EURL and NRLs)
- certified reference material
- for unauthorised GE GMOs new methods must be developed by surveillance authorities

What else is challenging for the surveillance authorities?

Screening approaches not applicable

no foreign DNAs (common genetic elements, P-35S or T-nos)

Without information and reference material \rightarrow no method

- fail to detect GE plants (w/o foreign DNA) and products from third countries enter the market undetected
- court-proof evidence difficult or impossible to be achieved
- no reference material

Costs and turn-around-time for GE-GMO testing probably increase

- New instruments; IT and bioinformatic pipeline
- · GE plants identification may require more than 1 method

Unclear method performance criteria

sensitivity, specificity, robustness, precision etc.

Influence of sample material

homogeneous or heterogeneous (e.g. seeds or composite feed)

What are the current activities?

Report of the European Network of GMO Laboratories (ENGL) published:

Detection of food and feed plant products obtained by new mutagenesis techniques

Report endorsed by the ENGL Steering Committee

Publication date: 26 March 2019

http://gmo-crl.jrc.ec.europa.eu/doc/JRC116289-GE-report-ENGL.pdf

ENGL Working Group activated (Oct. 2019; request of EU COM)

Task:

Expand existing Guidance on ,Minimal Performance Requirements for Methods of GMO Testing" and define acceptance criteria for (additional/new) methods for detection, identification and quantification of food/feed GE-plants

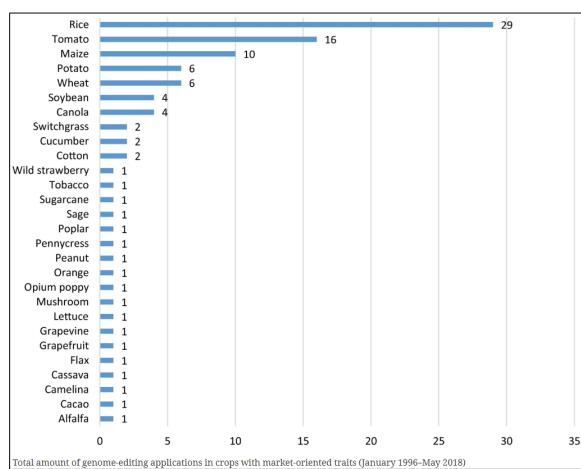
Further activities

BVL Working Group (§28b GenTG)

- Case-study using a reference material to test the new analysis methods (rh-PCR, digital PCR, targeted NGS)
- non-commercial ODM <u>or</u> somaclonal modified rapeseed lines used for proof-of-principle and method evaluations
- Challenging questions:

Is it possible to achieve the limit of detection and for quantification?

- 0,9% labelling threshold (Reg. 1829/2003)
- 0,1% threshold for feed with pending authorisation (Reg. 619/2011)
- What are the expected costs, turn-around-time? Which equipment and expertise are required?


9th MEACB 07 Nov 2019 Page 9

Other activities

Compilation of available knowledge on applications of genome-editing in plants

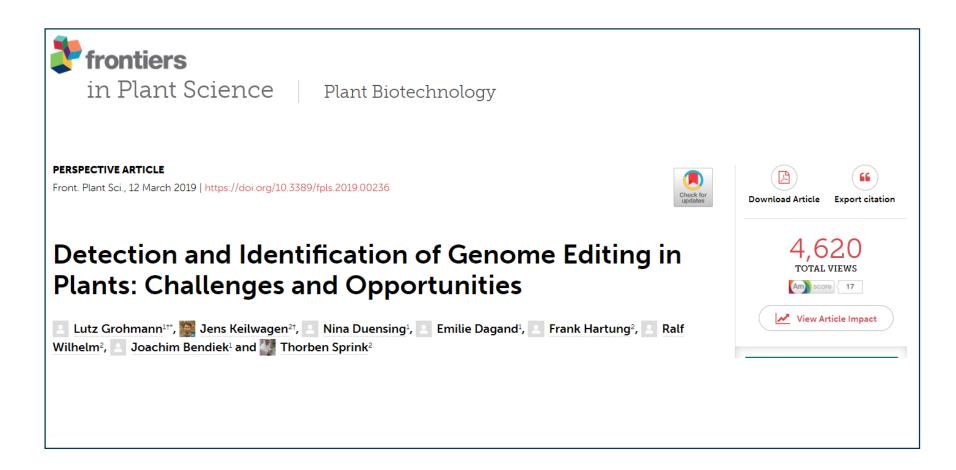
99 different market-oriented applications in 28 different crops

Modrzejewski et al. Environ Evid (2019) 8:27 https://doi.org/10.1186/s13750-019-0171-5

9th MEACB 07 Nov 2019 Page 10

GE-GMO database

EUginius (EUropean GMO INItiative for a Unified database System)


- joint public website and GMO database hosted by BVL and WFSR (Wageningen Food Safety Research (previously RIKILT)
- 11 GE-GMOs (>20 in pipeline) with details on references (patent, publications etc.), authorization status (different countries), the genetic modification

смо ∏	UID 🏗	Species 1	Traits	Companies	Developers	Tradenames	EU authorisation
GE-J2 Tomato		Solanum lycopersicum (tomato)	Improved fruit abscission		University of Paris- Saclay, University of Liège		X # & &
GE-PPO Potato		Solanum tuberosum (potato)	Alteration in growth, development or product quality	Calyxt	Calyxt		X Ø & &
GE-FAE1 Pennycress		Thlaspi arvense L.	Altered fatty acids and oils		Illinois State University		X / & &
GE-Vinv Potato		Solanum tuberosum (potato)	Alteration in growth, development or product quality	Calyxt	Cellectis plant sciences		X Ø & &
GE-PPO Mushroom		Agaricus bisporus	Reduced browning		Pennsylvania State University		XØ&
Low PPO5 potato		Solanum tuberosum (potato)	Reduced black spot bruising	J.R. Simplot	J.R. Simplot		X Ø & *
FAD2KO Soybean		Glycine max (soybean)	Altered fatty acids and oils	Calyxt	Cellectis plant sciences		X 0 & *
BHB Hi-Yield Maize		Zea mays (maize, corn)	Enhanced growth rate or yield	Benson Hill Biosystems	Benson Hill Biosystems		X Ø & &
FAD3KO Soybean		Glycine max (soybean)	Altered fatty acids and oils	Calyxt	Cellectis plant sciences		X / & &
<u>5715</u>		Brassica napus (canola, oilseed rape, rapeseed)	Sulfonylurea tolerance, Imidazolinone tolerance	Cibus US LLC	Cibus US LLC	SU Canola	X Ø & &
CLB1		Brassica napus (canola, oilseed rape, rapeseed)	Imidazolinone tolerance		BASF		X / & &

www.euginius.eu (search for "GE")

https://www.frontiersin.org/articles/10.3389/fpls.2019.00236/full

9th MEACB 07 Nov 2019 Page 12

Thank you for your attention!

Contact:

lutz.grohmann@bvl.bund.de

